Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reproduction ; 167(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271800

RESUMEN

In brief: The cervix plays a crucial role not only in the maintenance of pregnancy but also during delivery, when it undergoes extensive changes. This study highlights the involvement of the endocannabinoidome in cervical remodeling, emphasizing its relevance in the shift from a nonpregnant to pregnant state and its potential contribution to preterm delivery in inflammatory contexts. Abstract: During pregnancy, the main role of the cervix is to isolate the fetus from outside pathogens and maintain the relatively closed system of uterine gestation. Conversely, toward the end of pregnancy, the cervix must be remodeled to increase flexibility and allow the delivery. This process is called cervical remodeling and dysregulation of the process plays a role in premature delivery. The endocannabinoidome plays an important role in several reproductive events; however, its function on cervical tissue throughout pregnancy is poorly understood. The goal of this study was to evaluate the presence and participation of the endocannabinoidome in lipopolysaccharide (LPS)-induced cervical changes. Therefore, we evaluated key components of the endocannabinoidome in cervical tissue from nonpregnant mice and pregnant mice with and without LPS treatment. Using mass spectrometric analysis, we found an increase in anandamide and 2-arachidonoylglycerol in the cervix of pregnant mice when compared to nonpregnant mice. We have also found a reduction in FAAH protein expression in these tissues. Furthermore, when treated with LPS, we observed a reduction in the cervical immunostaining with anti-CB1 and anti-CB2 antibodies. Likewise, using cervix explants from pregnant mice, we found that LPS significantly increased cervical metalloprotease activity and cyclooxygenase 2, which were subsequently modulated by cannabinoid receptor antagonists. Collectively, our findings suggest that an LPS-induced imbalance of cervix endocannabinoidome likely contributes to premature cervical remodeling, which is part of the key components that contribute to premature delivery.


Asunto(s)
Trabajo de Parto Prematuro , Nacimiento Prematuro , Embarazo , Humanos , Femenino , Ratones , Animales , Cuello del Útero/fisiología , Endocannabinoides/farmacología , Lipopolisacáridos/farmacología , Útero/metabolismo , Trabajo de Parto Prematuro/metabolismo , Nacimiento Prematuro/metabolismo
2.
Neuropharmacology ; 239: 109674, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37541383

RESUMEN

The molecular processes that underlie long-term memory formation involve signaling pathway activation by neurotransmitter release, which induces the expression of immediate early genes, such as Zif268, having a key role in memory formation. In this work, we show that the cannabinoid CB1 receptor signaling is necessary for the effects of dexamethasone on the behavioral response in an inhibitory avoidance task, on dexamethasone-induced ERK phosphorylation, and on dexamethasone-dependent Zif268 expression. Furthermore, we provide primary evidence for the mechanism responsible for this crosstalk between cannabinoid and glucocorticoid-mediated signaling pathways, showing that dexamethasone regulates endocannabinoid metabolism by inhibiting the activity of the Fatty acid amide hydrolase (FAAH), an integral membrane enzyme that hydrolyzes endocannabinoids and related amidated signaling lipids. Our results provide novel evidence regarding the role of the endocannabinoid system, and in particular of the CB1 receptor, as a mediator of the effects of glucocorticoids on the consolidation of aversive memories.


Asunto(s)
Cannabinoides , Consolidación de la Memoria , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/genética , Cannabinoides/farmacología , Transducción de Señal , Glucocorticoides/farmacología , Dexametasona/farmacología , Amidohidrolasas , Moduladores de Receptores de Cannabinoides/farmacología
3.
J Nutr Biochem ; 96: 108805, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147601

RESUMEN

Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.


Asunto(s)
Lipopolisacáridos/efectos adversos , Obesidad Materna/genética , Receptor Cannabinoide CB1/genética , Animales , Animales Recién Nacidos , Dieta Alta en Grasa/efectos adversos , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Noqueados , Obesidad , Obesidad Materna/metabolismo , Embarazo , Resultado del Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptor Cannabinoide CB1/metabolismo
4.
J Reprod Immunol ; 144: 103273, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33515908

RESUMEN

The production of pro-inflammatory cytokines during inflammatory processes has been associated with preterm birth (PTB) and fetal injury in humans and mice. We previously demonstrated that exposition to an enriched environment (EE), defined as a noninvasive and biological significant stimulus of the sensory pathway combined with voluntary physical activity, prevented PTB and perinatal death induced by the systemic administration of bacterial lipopolysaccharide (LPS) in mice. This work aimed to analyze whether EE modulates the immune response to the inflammatory process induced by LPS in peripheral blood and the amniotic fluid (AF). We observed that EE modulated maternal white blood cell count and its response to LPS. Furthermore, we found higher levels of IL-10 and a higher percentage of B cells in AF from EE exposed mothers compared to controls. Albeit LPS significantly increased IL-6 levels in AF from both groups, it was 3.6 times higher in control environment (CE) exposed group when compared to EE. Similarly, levels of IL-22 were significantly increased by LPS in both groups, but it was 6.7 times higher in EE group. Interestingly, levels of PGE2 in AF were only increased in the EE-LPS treated group, and a positive correlation between IL-22 and PGE2 levels was observed. During lactation, EE prevented LPS-induced delay in physical landmarks analyzed to assess offspring development. Our results suggest that EE modulates the immune response to systemic LPS-administration protecting the offspring. We propose that an EE-like protocol could be designed for pregnant women aiming at preventing the sequelae present in premature children.


Asunto(s)
Líquido Amniótico/inmunología , Muerte Perinatal/prevención & control , Condicionamiento Físico Animal , Nacimiento Prematuro/prevención & control , Animales , Linfocitos B/inmunología , Desarrollo Infantil , Modelos Animales de Enfermedad , Femenino , Estilo de Vida Saludable , Humanos , Recién Nacido , Lactancia/inmunología , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Recuento de Linfocitos , Ratones , Embarazo , Nacimiento Prematuro/sangre , Nacimiento Prematuro/inmunología
5.
Reproduction ; 159(4): 479-492, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31999624

RESUMEN

Maternal lifestyle affects both mother health and pregnancy outcome in humans. Several studies have demonstrated that interventions oriented toward reducing stress and anxiety have positive effects on pregnancy complications such as preeclampsia, excessive gestational weight, gestational diabetes and preterm birth. In this work, we showed that the environmental enrichment (EE), defined as a noninvasive and biologically significant stimulus of the sensory pathway combined with voluntary physical activity, prevented preterm birth (PTB) rate by 40% in an inflammatory mouse model induced by the systemic administration of bacterial lipopolysaccharide (LPS). Furthermore, we found that EE modulates maternal metabolism and produces an anti-inflammatory environment that contributes to pregnancy maintenance. In pregnant mice uterus, EE reduces the expression of TLR4 and CD14 (the LPS receptor and its coactivator protein), preventing the LPS-induced increase in PGE2 and PGF2α release and nitric oxide synthase (NOS) activity. In cervical tissue, EE inhibits cervical ripening events, such as PGE2 release, matrix metalloproteinase (MMP)-9 increased activity and neutrophil recruitment, therefore conserving cervical function. It seems that EE exposure could mimic the stress and anxiety-reducing techniques mentioned above, explaining, at least partially, the beneficial effects of having a healthy lifestyle before and during gestation. Furthermore, we propose that designing an EE protocol for humans could be a noninvasive and preventive therapy for pregnancy complications, averting pre-term birth occurrence and dreaded sequelae that are present in the offspring born too soon.


Asunto(s)
Nacimiento Prematuro/prevención & control , Estrés Psicológico/prevención & control , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Ambiente , Femenino , Estilo de Vida Saludable , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Infiltración Neutrófila , Embarazo , Nacimiento Prematuro/sangre , Nacimiento Prematuro/etiología , Estrés Psicológico/complicaciones , Receptor Toll-Like 4/metabolismo , Útero/metabolismo
6.
J Cell Physiol ; 235(11): 8260-8269, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31970793

RESUMEN

Maternal obesity has been shown to impact the offspring health during childhood and adult life. This study aimed to evaluate whether maternal obesity combined with postnatal exposure to an obesogenic diet could induce metabolic alterations in offspring. Female CD1 mice were fed a control diet (CD, 11.1% of energy from fat) or with a high-fat diet (HFD, 44.3% of energy from fat) for 3 months. After weaning, pups born from control and obese mothers were fed with CD or HFD for 3 months. Both mothers and offspring were weighted weekly and several blood metabolic parameters levels were evaluated. Here, we present evidence that the offspring from mothers exposed to a HFD showed increased acetylation levels of histone 3 on lysine 9 (H3K9) in the liver at postnatal Day 1, whereas the levels of acetylation of H4K16, dimethylation of H3K27, and trimethylation of H3K9 showed no change. We also observed a higher perinatal weight and increased blood cholesterol levels when compared to the offspring on postnatal Day 1 born from CD-fed mothers. When mice born from obese mothers were fed with HFD, we observed that they gained more weight, presented higher blood cholesterol levels, and abdominal adipose tissue than mice born to the same mothers but fed with CD. Collectively, our results point toward maternal obesity and HFD consumption as a risk factor for epigenetic changes in the liver of the offspring, higher perinatal weight, increased weight gain, and altered blood cholesterol levels.


Asunto(s)
Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos de la Nutrición Prenatal , Animales , Metilación de ADN , Femenino , Histonas/metabolismo , Hígado/metabolismo , Ratones , Embarazo
7.
J Pineal Res ; 63(4)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28776755

RESUMEN

Preterm birth is a major contributor to early and delayed physical and cognitive impairment. Epidemiological and experimental data indicate that maternal infections are a significant and preventable cause of preterm birth. Recently, melatonin has been suggested to exert neuroprotective effects in several models of brain injury. Here, we sought to investigate whether the administration of melatonin is able to prevent lipopolysaccharide (LPS)-induced fetal brain damage in a model of LPS-induced preterm labor. For this purpose, 15-day pregnant BALB/c mice received intraperitoneally 2 doses of LPS or vehicle: the first one at 10:00 hours (0.26 mg/kg) and the second at 13:00 hours (0.52 mg/kg). On day 14 of pregnancy, a group of mice was subcutaneously implanted with a pellet of 25 mg melatonin. This experimental protocol resulted in 100% of preterm birth and pup death in the LPS group and a 50% of term birth and pup survival in the melatonin + LPS group. In the absence of melatonin, fetuses from LPS-treated mothers showed histological signs of brain damage, microglial/macrophage activation, and higher levels of IL-1ß, inducible nitric oxide synthase (NOS), and neuronal NOS mRNAs as well as increased histone acetyltransferase activity and histone H3 hyperacetylation. In contrast, antenatal administration of melatonin prevented LPS-induced fetal brain damage. Moreover, when behavioral traits were analyzed in the offspring from control, melatonin, and melatonin + LPS, no significant differences were found, suggesting that melatonin prevented LPS-induced long-term neurodevelopmental impairments. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent fetal brain damage and its long-term consequences induced by maternal inflammation.


Asunto(s)
Traumatismos del Nacimiento/prevención & control , Lesiones Encefálicas/prevención & control , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Nacimiento Prematuro , Animales , Traumatismos del Nacimiento/etiología , Lesiones Encefálicas/etiología , Femenino , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos BALB C , Trabajo de Parto Prematuro/inducido químicamente , Embarazo , Nacimiento Prematuro/inducido químicamente
8.
J Cell Physiol ; 232(6): 1441-1447, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27731508

RESUMEN

Maternal infections with gram-negative bacteria are associated with miscarriage and are one of the most common complications during pregnancy. Previous studies from our group have shown that lipopolysaccharide (LPS)-activated infiltrating peripheral blood mononuclear cells (PBMC) into decidual tissue plays an important role in the establishment of a local inflammatory process that results in embryo cytotoxicity and early embryo resorption. Moreover, we have also shown that an increased endocannabinoid tone mediates LPS-induced deleterious effects during early pregnancy loss. Here, we sought to investigate whether the infiltrating PBMC modulates the decidual endocannabinoid tone and the molecular mechanisms involved. PBMC isolated from 7-day pregnant mice subjected to different treatments were co-cultured in a transwell system with decidual tissue from control 7-day pregnant mice. Decidual fatty acid amide hydrolase (FAAH) activity was measured by radioconvertion, total decidual protein nitration by Western blot (WB), and decidual FAAH nitration by immunoprecipitation followed by WB. We found that co-culture of PBMC obtained from LPS-treated mice increased the level of nitration of decidual FAAH, which resulted in a negative modulation of decidual FAAH activity. Interestingly, co-treatment with progesterone or aminoguanidine prevented this effect. We found that LPS-treated PBMC release high amounts of nitric oxide (NO) which causes tyrosine nitration of decidual FAAH, diminishing its enzymatic activity. Inactivation of FAAH, the main degrading enzyme of anandamide and similar endocannabinoids, could lead to an increased decidual endocannabinoid tone with embryotoxic effects. J. Cell. Physiol. 232: 1441-1447, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Amidohidrolasas/metabolismo , Decidua/enzimología , Regulación hacia Abajo , Pérdida del Embrión/inducido químicamente , Pérdida del Embrión/enzimología , Leucocitos Mononucleares/metabolismo , Animales , Decidua/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Pérdida del Embrión/patología , Femenino , Guanidinas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/administración & dosificación , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Nitrosación , Progesterona/farmacología , Quercetina/farmacología
9.
Reproduction ; 152(6): R191-R200, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27798285

RESUMEN

The endocannabinoid system (eCS), is a complex system, comprising the main endogenous ligands anandamide and 2-arachidonoyl glycerol, the cannabinoid receptors CB1 and CB2 and the biosynthetic and degrading enzymes. Cumulative evidence shows that the eCS plays an important role in reproduction, from egg fertilization to parturition. Therefore, alterations in this system, either by recreation/therapeutic use of cannabis or deregulation of the endogenous cannabinoids, might lead to adverse pregnancy outcomes, including retardation in embryo development, poor blastocyst implantation, inhibition of decidualization, miscarriage and compromised placentation. Nevertheless, the molecular mechanisms by which the eCS participates in different stages of pregnancy remain poorly understood. In this review, we will examine the evidence from animal and human studies to support the role of the eCS in implantation, early-to-late pregnancy and placentation as well as the difficulties of targeting this system for treatment of female infertility.


Asunto(s)
Desarrollo Embrionario/fisiología , Endocannabinoides/farmacología , Reproducción/fisiología , Animales , Desarrollo Embrionario/efectos de los fármacos , Femenino , Humanos , Embarazo , Reproducción/efectos de los fármacos
10.
Reproduction ; 150(6): 463-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26347521

RESUMEN

Prematurity is the leading cause of perinatal morbidity and mortality worldwide. There is a strong causal relationship between infection and preterm births. Intrauterine infection elicits an immune response involving the release of inflammatory mediators like cytokines and prostaglandins (PG) that trigger uterine contractions and parturition events. Anandamide (AEA) is an endogenous ligand for the cannabinoid receptors CB1 and CB2. Similarly to PG, endocannabinoids are implicated in different aspects of reproduction, such as maintenance of pregnancy and parturition. Little is known about the involvement of endocannabinoids on the onset of labor in an infectious milieu. Here, using a mouse model of preterm labor induced by lipopolysaccharide (LPS), we explored changes on the expression of components of endocannabinoid system (ECS). We have also determined whether AEA and CB antagonists alter PG production that induces labor. We observed an increase in uterine N-acylphosphatidylethanolamine-specific phospholipase D expression (NAPE-PLD, the enzyme that synthesizes AEA) upon LPS treatment. Activity of catabolic enzyme fatty acid amide hydrolase (FAAH) did not change significantly. In addition, we also found that LPS modulated uterine cannabinoid receptors expression by downregulating Cb2 mRNA levels and upregulating CB1 protein expression. Furthermore, LPS and AEA induced PGF2a augmentation, and this was reversed by antagonizing CB1 receptor. Collectively, our results suggest that ECS may be involved in the mechanism by which infection causes preterm birth.


Asunto(s)
Endocannabinoides/metabolismo , Lipopolisacáridos , Trabajo de Parto Prematuro/metabolismo , Útero/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Antagonistas de Receptores de Cannabinoides/farmacología , Dinoprost/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/genética , Femenino , Regulación de la Expresión Génica , Edad Gestacional , Ratones Endogámicos BALB C , Trabajo de Parto Prematuro/inducido químicamente , Trabajo de Parto Prematuro/genética , Trabajo de Parto Prematuro/fisiopatología , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Embarazo , Progesterona/sangre , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Factores de Tiempo , Útero/efectos de los fármacos , Útero/fisiopatología
11.
J Pineal Res ; 56(2): 154-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24313220

RESUMEN

Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that intra-amniotic infections may be a significant and potentially preventable cause of preterm birth. This work assessed the effect of melatonin in a murine model of inflammation-associated preterm delivery which mimics central features of preterm infection in humans. For this purpose, preterm labor was induced in BALB/c mice by intraperitoneal injections of bacterial lipopolysaccharide (LPS) at 10.00 hr (10 µg LPS) and 13.00 hr (20 µg LPS) on day 15 of pregnancy. On day 14 of pregnancy, a pellet of melatonin (25 mg) had been subcutaneously implanted into a group of animals. In the absence of melatonin, a 100% incidence of preterm birth was observed in LPS-treated animals, and the fetuses showed widespread damage. By comparison, treatment with melatonin prevented preterm birth in 50% of the cases, and all pups from melatonin-treated females were born alive and their body weight did not differ from control animals. Melatonin significantly prevented the LPS-induced rises in uterine prostaglandin (PG) E2 , PGF2α, and cyclooxygenase-2 protein levels. In addition, melatonin prevented the LPS-induced increase in uterine nitric oxide (NO) production, inducible NO synthase protein, and tumor necrosis factor-alpha (TNFα) levels. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent preterm labor and to increase offspring survival.


Asunto(s)
Melatonina/uso terapéutico , Trabajo de Parto Prematuro/tratamiento farmacológico , Trabajo de Parto Prematuro/metabolismo , Sustancias Protectoras/uso terapéutico , Animales , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Lipopolisacáridos/toxicidad , Melatonina/farmacología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Trabajo de Parto Prematuro/inducido químicamente , Trabajo de Parto Prematuro/prevención & control , Embarazo , Prostaglandinas/metabolismo , Sustancias Protectoras/farmacología
12.
Mol Cell Endocrinol ; 381(1-2): 97-105, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23906535

RESUMEN

Increased anandamide concentrations are associated with pregnancy failure. Anandamide levels are regulated by the fatty acid amide hydrolase (FAAH). The aim of the study was to investigate the role of progesterone (P) on FAAH modulation in murine peripheral blood mononuclear cells (PBMC) under septic conditions. We observed that in vivo administration of LPS to non-pregnant (NP) mice decreased FAAH activity of PBMC while in pregnant mice no changes in FAAH activity were observed. NP animals administered with P had a similar response to LPS as the pregnant animals. Also, NP mice injected with P antagonist and P showed that the effect of P on LPS-reduced FAAH activity was impaired. Furthermore, LPS produced a decrease in the ratio of PR-B/PR-A in NP animals. Our results showed that, in our model the endotoxin decreased PBMC's FAAH activity and this condition was reverted by P in a receptor-mediated fashion.


Asunto(s)
Amidohidrolasas/metabolismo , Lipopolisacáridos/farmacología , Progesterona/fisiología , Linfocitos T/enzimología , Amidohidrolasas/genética , Animales , Femenino , Expresión Génica , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Linfocitos T/inmunología
13.
PLoS One ; 8(2): e56161, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409146

RESUMEN

Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Pérdida del Embrión/inducido químicamente , Pérdida del Embrión/prevención & control , Factor Inhibidor de Leucemia/metabolismo , Lipopolisacáridos/farmacología , Progesterona/farmacología , Animales , Antiinflamatorios/sangre , Suplementos Dietéticos , Pérdida del Embrión/sangre , Pérdida del Embrión/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/farmacología , Ratones , Ratones Endogámicos BALB C , Mifepristona/farmacología , Óxido Nítrico/metabolismo , Embarazo , Progesterona/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Progesterona/metabolismo , Útero/efectos de los fármacos , Útero/metabolismo
14.
PLoS One ; 7(7): e39532, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792180

RESUMEN

Prostaglandins (PG) are effective abortifacients and are important mediators of lipopolisaccharide (LPS)-induced embryonic resorption (ER). Besides, anandamide (AEA) has been described as one of the major endocannabinoids present in the uterus suggesting that it might play a role in reproduction. It has been reported that high levels of AEA are associated with pregnancy failure and that LPS increases AEA production. Also, it has been observed that AEA modulates PG production in different tissues. In this sense, we studied whether LPS-induced PG production is modulated by AEA and we also assessed the effect of this endocannabinoid on PG metabolism in an in vitro model. Uterine explants from BALB/c implantation sites were cultured in the presence of LPS plus cannabinoid receptor (CB) specific antagonists and PG production was assessed. Then, we studied the effect of exogenous AEA on different steps of PG metabolic pathway. We showed that AEA is involved in LPS-induced PG biosynthesis. Also, we observed that AEA exerts opposite effects on PGE(2) and PGF(2α) biosynthesis, by inhibiting PGE(2) production and increasing PGF(2α) levels. We suggest that AEA could be involved in the mechanisms implicated in LPS-induced ER. A better understanding of how AEA could be affecting ER could help developing specific interventions to prevent this pathology.


Asunto(s)
Ácidos Araquidónicos/farmacología , Dinoprost/biosíntesis , Dinoprostona/biosíntesis , Lipopolisacáridos/farmacología , Útero/efectos de los fármacos , Útero/metabolismo , Animales , Ácidos Araquidónicos/administración & dosificación , Endocannabinoides/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Embarazo , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo
15.
Reproduction ; 144(4): 447-54, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22843771

RESUMEN

The initial inactivation of prostaglandins (PGs) is mediated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). PGs are potent mediators of several biological processes, including inflammation and reproduction. In uterus, PGs play a key role in infection-induced pregnancy loss, in which concentration of this mediator increased. This process is accompanied with the induction of nitric oxide synthase expression and a marked increase in uterine levels of nitric oxide. There is no information concerning nitric oxide contribution to potential changes in PG catabolism, but experimental evidence suggests that nitric oxide modulates PG pathways. The specific objectives of the study were to evaluate the protein expression of HPGD (15-PGDH) and to characterize the nitric oxide-dependent regulation of this enzyme in a model of lipopolysaccharide (LPS)-induced embryonic resorption. Results show that LPS decreased HPGD protein expression and augmented PGE synthase activity; therefore, PGE2 levels increased in uterus in this inflammatory condition. Just as LPS, the treatment with a nitric oxide donor diminished HPGD protein expression in uterine tissue. In contrast, the inhibition of nitric oxide synthesis both in control and in LPS-treated mice increased 15-PGDH levels. Also, we have found that this enzyme and PGE2 levels are not modulated by peroxynitrite, an oxidant agent derived from nitric oxide. This study suggests that LPS and nitric oxide promote a decrease in the ability of the uterus for PG catabolism during bacterially triggered pregnancy loss in mice.


Asunto(s)
Regulación hacia Abajo , Pérdida del Embrión/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Óxido Nítrico/metabolismo , Útero/metabolismo , Animales , Dinoprostona/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Pérdida del Embrión/enzimología , Pérdida del Embrión/inmunología , Inhibidores Enzimáticos/farmacología , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Femenino , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Embarazo , Complicaciones Infecciosas del Embarazo/enzimología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/metabolismo , Prostaglandina-E Sintasas , Distribución Aleatoria , Regulación hacia Arriba/efectos de los fármacos , Útero/efectos de los fármacos , Útero/inmunología
16.
Neuroimmunomodulation ; 17(3): 150-2, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20134189

RESUMEN

Even though the understanding of the cause of early pregnancy loss due to chromosomal abnormalities has improved, there is a dearth of knowledge of the causes of loss in euploid conceptuses. Maternal infections are a cause of abort in humans, but the mechanisms are not clear, so we have developed a murine model to study the mechanism of septic abortion by inducing embryonic resorption (ER) with lipopolysaccharide (LPS). We demonstrated that augmented production of nitric oxide (NO) and prostaglandins (PG) is involved in ER, and that inhibitors of their synthesis could prevent ER. Also, we observed an increase in the oxidative damage, evidenced by nitration of tyrosine proteins, due to the peroxynitrite anion. Since an association between chronic marijuana smoking and early miscarriage has been shown in women, we studied the participation of anandamide (AEA), the principal endocannabinoid, on the mechanism of action of LPS. We showed that LPS-induced NO synthesis and tissue damage were mediated by AEA, and that this endotoxin inhibited AEA degradation and increased its synthesis. These results suggest that several inflammatory molecules participate in the mechanism of early pregnancy loss and that their modulation could be useful tools to prevent it.


Asunto(s)
Aborto Séptico/fisiopatología , Aborto Espontáneo/fisiopatología , Inflamación/fisiopatología , Aborto Séptico/inmunología , Aborto Espontáneo/inmunología , Animales , Moduladores de Receptores de Cannabinoides/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos/inmunología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiopatología , Femenino , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Ratones , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Embarazo , Prostaglandinas/metabolismo
17.
Am J Pathol ; 173(6): 1702-13, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19008374

RESUMEN

Uveitis is a common ophthalmic disorder that can be induced in hamsters by a single intravitreal injection of bacterial lipopolysaccharide (LPS). To examine the therapeutic effects of melatonin on uveitis, a pellet of melatonin was implanted subcutaneously 2 hours before the intravitreal injection of either vehicle or LPS. Both 24 hours and 8 days after the injection, inflammatory responses were evaluated in terms of i) the integrity of the blood-ocular barrier, ii) clinical signs, iii) histopathological studies, and iv) retinal function. Melatonin reduced the leakage of proteins and cells in the anterior segment of LPS-injected eyes, decreased clinical signs such as dilation of the iris and conjunctival vessels, and flare in the anterior chamber, and protected the ultrastructure of the blood-ocular barrier. A remarkable disorganization of rod outer segment membranous disks was observed in animals injected with LPS, whereas no morphological changes in photoreceptor outer segments were observed in animals treated with melatonin. Furthermore, melatonin prevented a decrease in LPS-induced electroretinographic activity. In addition, melatonin significantly abrogated the LPS-induced increase in retinal nitric-oxide synthase activity, tumor necrosis factor-alpha, and nuclear factor kappaB p50 and p65 subunit levels. These results indicate that melatonin prevents the clinical, biochemical, histological, ultrastructural, and functional consequences of experimental uveitis, likely through a nuclear factor kappaB-dependent mechanism, and support the use of melatonin as a new therapeutic strategy for the treatment of uveitis.


Asunto(s)
Melatonina/uso terapéutico , Uveítis/tratamiento farmacológico , Animales , Barrera Hematorretinal/anatomía & histología , Barrera Hematorretinal/metabolismo , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Electrorretinografía , Ojo/anatomía & histología , Ojo/inmunología , Ojo/patología , Humanos , Implantes Experimentales , Lipopolisacáridos/inmunología , Masculino , Mesocricetus , Uveítis/inducido químicamente , Uveítis/inmunología , Uveítis/patología
18.
Neuroimmunomodulation ; 15(1): 84-90, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18667804

RESUMEN

Neuroimmune-endocrine interactions seem to be central to the dialogue between the mother and the growing embryo during normal pregnancy. A proinflammatory Th1 microenvironment appears to be associated with embryo implantation but an excess of these cytokines may be deleterious. When normal gestation is subjected to stressful stimuli as those provided by a chronic inflammatory milieu, the activation profile of T cells and macrophages may be temporarily changed. Although much evidence supports the protective role of pregnancy in Th1 autoimmune diseases, the comprehension of the maternofetal interaction in an inflammatory context may serve to get more insight into pregnancy failures. Macrophages integrate multiple inputs and signals of neuroimmune-endocrine systems and they appear as major participants in either embryo implantation or loss. Changes at the macrophage level during gestation might help to understand their regulatory role in embryo implantation as well as to disclose their local and systemic pathogenic potential.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Neuroinmunomodulación/inmunología , Sistemas Neurosecretores/inmunología , Complicaciones del Embarazo/inmunología , Animales , Enfermedades Autoinmunes/fisiopatología , Implantación del Embrión/inmunología , Femenino , Humanos , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Inflamación/fisiopatología , Intercambio Materno-Fetal/inmunología , Sistemas Neurosecretores/fisiopatología , Embarazo , Complicaciones del Embarazo/fisiopatología , Células TH1/inmunología
19.
Reproduction ; 132(6): 931-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17127753

RESUMEN

A functional interaction between progesterone, Th2 cytokines and a suitable balance between nitric oxide and prostaglandins in the uterus is considered to have a major role in the success of embryo implantation and pregnancy. Non-obese diabetic (NOD) mice offer a suitable model to study the modulatory role of Th1 cytokines on uterus signalling and function, since at the prediabetic stage they develop a spontaneous Th1 autoimmune response against exocrine glands similar to Sjögren's syndrome. Vasoactive intestinal peptide (VIP) is a vasoactive neuro- and immunopeptide that promotes Th2 profiles and contributes to the smooth muscle relaxation and vasodilation. The aim of the present study was to investigate the activities of nitric oxide synthase and cyclo-oxygenase and the effect of VIP in the uterus of NOD mice with an emerging Th1 cytokine response. We present evidence of a reduced basal and VIP-stimulated activity of both enzymes in the uterus of NOD mice compared with normal BALB/c mice in proestrus. An altered functional interaction between both enzymes is also present in NOD mice at the time when increased levels of serum interleukin (IL)-12 and tumour necrosis factor-alpha but not interferon (IFN)-gamma or IL-10 were detected. We conclude that signalling alterations in uteri of NOD mice are simultaneous to the onset of a systemic Th1 cytokine response.


Asunto(s)
Diabetes Mellitus Tipo 1/enzimología , Óxido Nítrico Sintasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Síndrome de Sjögren/enzimología , Útero/enzimología , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprostona/análisis , Dinoprostona/metabolismo , Activación Enzimática , Femenino , Inmunohistoquímica , Indometacina/farmacología , Interferón gamma/análisis , Interferón gamma/sangre , Interleucina-10/análisis , Interleucina-10/sangre , Interleucina-12/análisis , Interleucina-12/sangre , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Modelos Animales , Óxido Nítrico Sintasa/análisis , Óxido Nítrico Sintasa/antagonistas & inhibidores , Embarazo , Prostaglandina-Endoperóxido Sintasas/análisis , Síndrome de Sjögren/inmunología , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/sangre , Útero/inmunología , Péptido Intestinal Vasoactivo/farmacología , omega-N-Metilarginina/farmacología
20.
Eur J Pharmacol ; 534(1-3): 218-26, 2006 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-16490189

RESUMEN

The aim of our study was to investigate if the lipopolysaccharide (LPS) differentially modulates throughout time the nitric oxide synthase (NOS) and cyclooxygenase (COX) enzymes in the estrogenized rat uterus. To study the effect of LPS throughout time on nitric oxide and prostaglandins production and on NOS and COX expression in the estrogenized rat uterus, females received 5 mg/kg intraperitoneally (i.p.) of LPS and were sacrificed 0.5, 1, 2, 3, 4 and 5 h post-administration. NO production was measured by arginine-citrulline conversion assay and prostaglandin E2/prostaglandin F2alpha by radioconversion. Enzyme expression was evaluated by Western blot analysis. The present work shows that LPS augmented NOS activity 3 h post-treatment and iNOS expression earlier, 2 h post-administration. On the other hand, the administration of LPS stimulated the production of prostaglandin E2/prostaglandin F2alpha and augmented the expression of COX-I 1 h after the treatment and of COX-II 2 h post-treatment. Meloxicam, a COX-II inhibitor, stimulated NO production in a group of rats injected i.p. with both LPS and the inhibitor and sacrificed 2 h after the treatment. These results indicate that, in the estrogenized rat uterus challenged with LPS, the early stimulation in the production of prostaglandins inhibited NOS activity, until the expression of the NOS isoforms is sufficient to overpass the inhibitory effect of the prostaglandins. The above findings suggest that the interaction between NOS and COX might be important in the regulation of physiopathologic events during pregnancy.


Asunto(s)
Dinoprost/metabolismo , Dinoprostona/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Útero/enzimología , Animales , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Estrógenos , Femenino , Meloxicam , Modelos Animales , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Wistar , Tiazinas/farmacología , Tiazoles/farmacología , Factores de Tiempo , Útero/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...